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September 30, 2021

A Data Construction and Robustness Check

A.1 Micro-level Data Analysis

This section presents regression analysis at the individual level. Similar to the baseline
regression, I utilize the dependent coding system in CPS. Occupational switching and
stay are defined as in section 2. State and federal level minimum wage data comes from
Vaghul and Zipperer (2016). I use the regional price index to calculate real minimum
wages.

At the individual level, themeasurement error is likely greater than the aggregate ones.
As Kambourov andManovskii (2013) point out, if the interviewee switched employers or
experienced usual activity changes, the occupational code is assigned independently by
the coder. The larger measurement error will likely attenuate the estimates.

The empirical specification for the micro-level data is:

(A.1) Occupational Switchist = α + βlnMWst + δt + λs + τs ∗ t+ ΓXi + ΩZst + ϵist

Since CPS allows at most 6 observations for one individual (the 1st and 5th month-in-
sample do not allow defining occupational switching), it is not suitable to include the
individual fixed effect. The outcome variable is an indicator for occupational switching
and staying. Equation (A.1) includes the state and time fixed effect. The individual con-
trols Xi include age, education, race, and gender. The aggregate controls Zst include the
state-level manufacturing and retail employment shares.

Table A.1 shows the results for the younger workers and younger, less-educated work-
ers. I use the state-clustered standard error. As expected, the estimates are attenuated
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compared to the baseline results in table 1. However, the elasticity is not much different.
For example, in the baseline regression, when adding the state-specific time trend, the
elasticity of the younger workers’ occupational mobility is -0.4. In the micro-level analy-
sis, the elasticity is -0.3.

The estimate for the younger, less-educatedworkers is insignificant. The point estimate
is imprecise. Compared to the aggregate regression equation (1), this suggests that the
individual level measure error is more severe. In particular, the aggregate level standard
error is much smaller.

As shown in the minimumwage literature, the low-wage workers are more affected by
the minimumwage. To explore whether the low-wage workers’ occupational mobility are
more affected, I use the following specification:
(A.2)
Occupational Switchist = α+ βlnMWst ∗Low Wageist + δt + λs + τs ∗ t+ΓXi +ΩZst + ϵist

On top of equation (A.1), equation (A.2) interacts the minimum wage with an indicator
of being in the five lowest-wage occupations (Low Wageist = 1) or the five highest-wage
occupations (Low Wageist = 0). The list of the occupations is in table A.4. The demo-
graphic controls include age, race, gender, education, and an indicator for being in the
low-wage occupations. The sample includes workers between 16 and 64. The results in
column (3) and (4) in table A.1 suggests that the minimumwage has no significant effect.
The result is consistent with the appendix section A.2.4, where at the aggregate level the
result is also insignificant.

This is likely because the olderworkers, regardless of their occupations, are not affected
by the minimum wage. I further restrict the sample to include only the younger workers
aged 16 to 30. The results in the last two columns in table A.1 show that the minimum
wage is negatively correlated with the younger, low-wage workers’ occupational mobility
while there is no effect on the younger, high-wage workers’ occupational mobility. The
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point estimate is larger in magnitude than that of the younger workers’ in equation (A.1).
Since the younger, low-wage workers’ monthly occupational mobility is 3.4%, the result
suggests an elasticity of -0.4, slightly larger than the -0.3 elasticity for the younger workers.

Together with the aggregate level analysis in section 2, the results point to an elasticity
of the occupational mobility with respect to the minimum wage of -0.4 to -0.3. The effect
concentrates on the workers who are more likely to be affected by the minimum wage,
namely the younger, less-educated, and low-wage workers.

Table A.1: The Effect of the MinimumWage on Occupational Mobility

(1) (2) (3) (4)
Age < 30 Age < 30× Age < 64 Age < 30

High-School
lnMWst -0.008* -0.008

(0.005) (0.007)
lnMWst ∗ Low Wageist -0.003 -0.015**

(0.002) (0.007)
lnMWst ∗High Wageist 0.001 -0.006

(0.002) (0.005)
Education 0.000 0.000*** 0.000*** 0.001***

(0.000) (0.000) (0.000) (0.000)
Age -0.002*** -0.002*** -0.001*** -0.002***

(0.000) (0.000) (0.000) (0.000)
Female -0.002*** -0.003*** -0.000 -0.002***

(0.000) (0.001) (0.000) (0.000)
Manufacturing -0.022 0.049 -0.005 -0.006
Share (0.076) (0.096) (0.041) (0.084)
Retail -0.45*** -0.394 -0.349*** -0.496**
Share (0.151) (0.237) (0.115) (0.185)

State FE Y Y Y Y
Time FE Y Y Y Y
State-Trend Y Y Y Y
Low-Wage Y Y
Observations N = 1287425 N = 516764 N = 2963718 N =661862

Notes. Table A.1 presents the results in equation (A.1) and equation (A.2). The sample
period is from 2005 to 2016. I weight the regression by the CPS final weight. I use state-
clustered standard errors. *** means significant at 1% level, ** means significant at 5% level,
* means significant at 10% level.
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A.2 Robustness

A.2.1 Placebo Test Details

I illustrate the placebo test in section 2 in detail. I first calculate the number of minimum
wage increases during the sample period for each state. It turns out that Iowa has the
lowest number of 2, while New York has the highest number of 11 times. 27 states change
minimumwage less than five times, while the other 24 states have five or more minimum
wage increases. I refer to the first group as the infrequent changers and the second group
as the frequent changers.

The infrequent changers is similar to the placebo sample in Dube et al. (2010) and the
frequent changers is similar to the actual sample in Dube et al. (2010). The idea is that,
the infrequent changers have less variation in their minimumwage policy. They hence act
like the controls whereas the frequent changers act like the treatments. By assigning the
treatment states’ minimumwage policy to the controls and run the regression, we should
not see any significant results since the controls do not actually receive the treatment.

In the current context, every state increases its minimum wage at some point, so tech-
nically the infrequent changers are not controls. But since they have fewer variations, in
the two-way fixed effect regression they act like the controls. I first describe the placebo
test by separating the states into the frequent and infrequent changers. Then I repeat the
exercise by separating the states into federal minimum wage and state-level minimum
wage states, as well as states with large average percentage increases and small average
percentage changes.

I randomly assign the minimum wage policies of the frequent changers to the infre-
quent changers in a one-to-one fashion. I first permute theminimumwage policies among
the frequent changers, then assign them to 24 randomly chosen states from the 27 infre-
quent changers. The total number of mappings is 24! × C(27, 24) in which C denotes the
combination function. I take 500 of them and run regression equation (A.1) using only
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the infrequent changers, with the fictitiousminimumwage data. For the youngerworkers,
out of 500 repetitions, only 6.4% give significant estimates at the 5% level. For the younger,
less-educated workers, out of the 500 estimates, only 5.3% of them are significant at the
5% level. This suggests there is no evidence of spatial confound.

I repeat the exercise for the above-mentioned groups. All permutations have less than
7%of significant results. The placebo tests hence donot find evidence of spatial confounds.

A.2.2 Endogenous Control Variables

Another potential issue not discussed in section 2 is that the control variables might be
endogenous. If the minimumwage changes manufacturing and retail employment share,
the effect would bias the estimates in the two-way fixed effect model. To show that this is
not the case, I regress the controls on the minimum wage using the two-way fixed effect
model. The result in table A.2 shows that the minimum wage has no significant effect on
either of the controls.

Table A.2: The Effect of the MinimumWage on Controls

(1) (2)
Manufacturing Employment Retail Employment

lmMWst -0.008 0.004
(0.007) (0.004)

Observations 7344 7344
R-squared 0.9820 0.9816
State FE Y Y
Year Month FE Y Y

Notes. The first column regresses state monthly manufacturing employ-
ment share on log real minimum wages and state and year-month fixed
effects. The second column uses state monthly retail trade employment
share as the dependent variable. The sample period is from 2005 to 2016.
Table A.2 uses state-clustered standard errors.
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A.2.3 Different Sample Periods

I present regression results using equation (1) but with different sample periods. The
sample periods in the baseline regression include the Great Recession. It is possible that
concurrent policy changes during the Great Recession drives the results. Often, the con-
current policy changes would lead to pre-trend in the panel diff-in-diff regression. While
the panel diff-in-diff result in section 2.4.2 suggests that there is no pre-trend, I skip the
Great Recession and run the baseline regression using data after 2008.

Table A.3 shows that the conclusion does not dependent on the specific choice of sam-
ple periods: negative response remainsmostly consistent for younger, less-educatedwork-
ers.

A.2.4 Occupational Mobility by Wages

In section 2, I separate the workers into sub-groups based on age and education. In the
subsection, I separate theworkers by low-wage and high-wage occupations. Since occupa-
tional choices are endogenous, the estimate includes the selection bias of being in the low-
or high-wage occupations. Nonetheless, it is useful to see whether the minimum wage
has differential effect on the occupational mobility of workers in low-wage and high-wage
occupations.

The regression specification is identical to the baseline two-way fixed effect regression:

( Switcher
Stayer+Switcher

)
st

= α + βlnMWst + δt + λs + ΓXst + ϵst

The occupationalmobility is constructed for theworkers in the 5-lowest-wage occupations
and the 5-highest-wage occupations. Table A.4 show the occupational codes.



Table A.3: The Effect of MinimumWages on Occupational Mobility

(1) (2) (3) (4) (5)
Age Age High College Age 16-30 ×
16-30 30-45 School High School

2008 to 2016 (N = 5508)

lnMWst -0.018*** 0.001 -0.007 -0.003 -0.022***
(0.0050) (0.0038) (0.0045) (0.0035) (0.0078)

2010 to 2016 (N = 4284)

lnMWst -0.020*** -0.002 -0.011** -0.004 -0.028***
(0.006) (0.0043) (0.0051) (0.0038) (0.0088)

2012 to 2016 (N = 3060)

lnMWst -0.016** 0.000 -0.006 -0.001 -0.021*
(0.008) (0.0054) (0.0058) (0.0044) (0.0113)

State FE Y Y Y Y Y
Year Month FE Y Y Y Y Y

Notes. Table A.3 presents the results using the baseline regression equation (1)
with different sample periods. TableA.3 uses state-clustered standard errors. ***
means significant at 1% level, **means significant at 5% level, *means significant
at 10% level.

Table A.4: Low-Wage and High-Wage Occupations 2010 Census Code

Low-Wage Occupations Census

Code

High-Wage Occupations Census

Code

Building & Grounds Clean 4200-4250 Management 0010-0430

Personal Care & Service 4300-4650 Computer & Mathematical 1000-1240

Sales & Related 4700-4965 Architect & Engineer 1300-1560

Office & Admin Support 5000-5940 Life & Social Science 1600-1965

Transportation 9000-9420 Legal 2100-2160
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Table A.5 shows the results. I use different sample periods. There is some evidence
that the minimum wage is associated with lower occupational mobility for the low-wage
occupation workers. For the high-wage occupation workers, there is no significant effect,
and the point estimates are positive. The results are consistent with the minimum wage
having more bites for the low-wage occupation workers.

Compared to the baseline results and the results in the appendix section A.1, the low-
wage workers’ occupational mobility do not respond to the minimum wage by much. As
discussed in the appendix section A.1, this could be that the older workers’ occupational
mobility is not sensitive to the minimum wage, regardless of their wages. I hence interact
the low-wage workers and the younger workers. The minimum wage significantly de-
creases their occupational mobility, shown in the last column of table A.5. The estimate
for the period 2005 to 2016 is very similar to the one using themicro-level data in table A.1.
The result suggests that the elasticity of the younger, low-wage workers’ occupational mo-
bility with respect to the minimum wage is -0.4.

A.3 Occupational Switching Via Unemployment

The occupational mobility construction in section 2 does not take into account occupa-
tional switch via unemployment. Workers can change occupations by going through un-
employment. In this section, Imeasure occupationalmobility by employment-unemployment-
employment transitions and study its response to the minimum wage. Note that the CPS
allows at most 3 consecutive observations (I need to drop the first and the fifth month
in sample). This means that I can only characterize occupational mobility via short-term
unemployment.

I merge three monthly files together. An occupational switch is identified if a worker
1. is employed in the first month, unemployed in the second month, and employment in
the third month; 2. has different occupational codes in the first and third months. An
occupational stayer is identified if a worker 1. is employed in the first month and the
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Table A.5: The Effect of Minimum Wages on Occupational
Mobility

(1) (2) (3)
Low-Wage High-Wage Age < 30×

Low-Wage

2005 to 2016 (N=7344)

lnMWst -0.003 0.004 -0.016***
(0.004) (0.004) (0.005)

2008 to 2016 (N=5508)

lnMWst -0.009** 0.004 -0.028***
(0.004) (0.006) (0.010)

2012 to 2016 (N=3060)

lnMWst -0.008 0.005 -0.028**
(0.005) (0.007) (0.011)

Mobility > 0 97% 78% 83%
Average Mobility 2.1% 1.4% 3.4%
State FE Y Y Y
Year Month FE Y Y Y

Notes. Table A.5 shows the effect of the minimum wage on
workers’ occupational mobility by low-wage and high-wage
occupations as in table A.4. Mobility > 0 is the fraction of
positive occupational mobility at the state-month level from
2005 to 2016. Average mobility is calculated using sample
period from 2005 to 2016. The standard error is clustered at
the state-level. *** means statistically different from zero at
the 1% level, ** at the 5% level, * at 10% the level.

third month; 2. has the same occupational code in these two months. 3. does not switch
employer or does not have usual activity change in the third month.53

53The data allows for longer intervals for defining occupationalmobility. For example, I could fo-

cus on the fourth and fifthmonth-in-sample and see if there is any change in the occupational code.

However, the interval between these two periods is eight months, making it difficult to deduce
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I study the effect of theminimumwage on the occupational mobility of the sub-groups
as in section 2. I investigate the effect of the minimumwage in the first month denoted by
lnMWst and the effect of three-month average minimum wages denoted by lnMW . The
empirical specification is

( Switcher
Stayer+Switcher

)
st

= α + βlnMWst + δt + λs + ΓXst + ϵst

The specification is identical to the baseline regression. Table A.6 presents the results.
The results are insignificant. This is likely because of poor data quality. For almost all the
sub-groups, over 50% of the observations are empty. The monthly average occupational
mobility for younger workers is 0.7%, 0.3% for older workers, and 0.9% for younger, less-
educated workers. The mobility is much smaller than the one in the baseline regression.

A.4 The Effect of theMinimumWage onOccupational TransitionRates

Section 2.5.2 shows for the youngerworkers, theminimumwage is associatedwith a lower
transition rate from non-routinemanual occupations to routine cognitive occupations. Ta-
ble A.7 shows all the estimates.

Table A.8 shows the occupational transition matrix for the younger workers from 2005
to 2016. The transition rates are average monthly transition rates. The occupational mo-
bility is defined at the 4-digit occupational code level, but aggregated to the four occupa-
tional categories. For example, the average monthly transition rate from the non-routine
cognitive occupations to the non-routine cognitive occupations is 1.0%. This means that
1% of the non-routine cognitive occupation workers switch occupations to another non-
routine cognitive occupation at the 4-digit code level in a month. Occupational switchers

whether an occupational code change across these two periods is truly an occupational switch. It

is also difficult to interpret which kind of occupational mobility is affected because I do not observe

what happens during the eight months.
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Table A.6: The Effect of MinimumWages on Occupational Mobility

(1) (2) (3) (4) (5)
Age Age High College Age 16-30 ×
16-30 30-45 School High-School

lnMWst -0.000 0.000 0.001 0.001 0.003
(0.0030) (0.0012) (0.0022) (0.0009) (0.0058)

lnMW 0.000 0.000 0.002 0.001 0.002
(0.0030) (0.0012) (0.0022) (0.001) (0.0058)

Mobility > 0 46% 35% 52% 48% 30%
Average Mobility 0.7% 0.3% 0.5% 0.3% 0.9%

Observations 7344 7344 7344 7344 7344
State FE Y Y Y Y Y
Year Month FE Y Y Y Y Y

Notes. Table A.6 identifies an occupational switch if and only if a worker is em-
ployed in the first period, unemployed in the second period, employed in the third
period, and has different occupational codes in the two employment. An occu-
pational stayer is a worker who has the same occupational code in the first and
the third month and who does not change employer or usual activity in the third
month. I aggregate the switchers and stayers at the state level and monthly fre-
quency using final weight. lnMWt is the real minimum wage in the first month.
lnMW is the three-month average minimum wage. Controls include state manu-
facturing and retail trade employment shares. Table A.6 uses state-clustered stan-
dard errors. *** means significant at 1% level, ** means significant at 5% level, *
means significant at 10% level.

and stayers are defined as in section 2.
The routine cognitive occupation workers tend to switch occupations more often than

the otherworkers. The two primary destinations are the routine cognitive occupations and
the non-routine cognitive occupations. For the non-routine manual occupation workers,
they tend to switcher to other non-routine manual occupations. Although they also have
a non-trivial tendency to switch to the routine-cognitive occupations.

For the non-routine cognitive and the routine manual occupations, the workers mainly
stay in the occupation category even if they switch occupations at the 4-digit level. This
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Table A.7: The Effect of MinimumWages on Detailed Occupational Transition Rates

From
To

Non-Routine Cognitive Non-Routine Manual Routine Cognitive Routine Manual

Non-Routine Cognitive 0.005 0.001 0.002 -0.002
(0.005) (0.003) (0.003) (0.003)

Non-Routine Manual 0.004 0.001 -0.009* -0.005
(0.003) (0.006) (0.005) (0.003)

Routine Cognitive 0.001 0.001 -0.004 -0.004
(0.003) (0.003) (0.005) (0.003)

Routine Manual -0.001 0.005 -0.003 -0.011
(0.003) (0.003) (0.004) (0.009)

Observations 612 612 612 612
State FE Y Y Y Y
Year FE Y Y Y Y

Notes. Table A.7 shows the estimate results from equation (9). The numbers are
coefficients of lnMWst. For example, the number in the cell (Non-Routine Cogni-
tive, Non-Routine Manual) is the coefficient of lnMWst in equation (9) using annual
transition rate from non-routine cognitive occupations to non-routine manual occu-
pations as the dependent variable. Equation (9) identifies an occupation switcher
and a stayer the same as in section 2. Table A.7 uses state-clustered standard errors.
*** means significant at 1% level, ** means significant at 5% level, * means significant
at 10% level.

Table A.8: Occupational Transition Matrix

From
To

Non-Routine Cognitive Non-Routine Manual Routine Cognitive Routine Manual

Non-Routine Cognitive 1.0% 0.4% 0.5% 0.2%
Non-Routine Manual 0.4% 1.4% 0.8% 0.6%
Routine Cognitive 1.0% 0.7% 1.4% 0.5%
Routine Manual 0.4% 0.5% 0.5% 1.7%

can be seen by comparing the probably on and off the diagonal.

67



A.5 Federal MinimumWage States

Table A.9: Federal MinimumWage States

Alabama North Dakota
Georgia Oklahoma
Idaho South Carolina
Indiana Tennessee
Kansas Texas
Kentucky Utah
Louisiana Virginia
Mississippi Wyoming

Notes. Table A.9 includes states that a have binding minimum wage equal to
the federal minimum wage from 2005 to 2016.

A.6 More Results from the GSC

In section 2, I show the GSC result for the workers aged 16 to 30. In this subsection, I show
the GSC results for the other subgroups of workers.

Table A.10: The Effect ofMinimumWages onOccupationalMobility: GSC Estimation

(1) (2) (3) (4) (5) (6)
Age Age High College Age 16-30 × Age 16-30 ×
16-30 30-45 School High School College

lnMWst -0.011** 0.001 0.000 -0.002 -0.011* -0.010
p=0.04 p=0.85 p=0.84 p=0.58 p=0.09 p=0.31

Mobility > 0 97% 94% 96% 99% 81% 67%
Average Mobility 2.9% 1.5% 2.0% 1.8% 3.1% 2.2%
N 7344 7344 7344 7344 7344 7344



A.7 Dynamic Effects of the MinimumWage

In section 2.4.2, I show the dynamic effects of the minimum wage using a panel DiD
method. A similar approach is to include leads and lags of the minimum wage in the
two-way fixed effect regression. The so-estimated coefficients are not DiD estimates, but
they could show the quasi-elasticity of the minimum wage before and after the increase.

I estimate the following equation:

(A.3)
( Switcher
Stayer+Switcher

)
st

= α +
5∑

τ=−5

βτ lnMWs,t−τ + δt + λs + ΓXst + ϵst

Equation (A.3) differs from the two-way fixed effect regression by including 5 lags and 5
leads of the log real minimum wage. Both equation (A.3) and adding the state-specific
time trends aim at capturing the dynamic effects of the minimum wage and testing for
robustness. The former focuses on estimating the average effects of the minimum wage
for both the lags and the leads across states, while the latter focuses on controlling for
underlying linear trends specific to each state.

Figure E.6 plots the coefficients for the subgroups of workers, with the month prior to
theminimumwage increase as the baseline. No estimates is significant at the 5% level. For
the younger workers and the younger, less-educated workers, the estimate for the month
of the minimum wage increase is significant at the 10% level. The other subgroups of
workers have small point estimates for all months.

Figure E.6 shows the lack of pre-trend. In that regard, it serves a similar purpose as the
panel DiD regression. The point estimates are not comparable to those in table 1. Instead,
I calculate the employment effect following Cengiz et al. (2019) as ∆β ≡

∑5
τ=0 βτ/6. The

results are in table A.11. Similar to the results from the two-way fixed effect regression, the
estimates are negative for the younger and the younger, high-school workers. The point
estimates are smaller and significant at the 10% level.
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Table A.11: The Effects of the MinimumWage on Occupational Mobility: Dynamic Effects

(1) (2) (3) (4) (5) (6)
Age Age High College Age 16-30 × Age 16-30 ×
16-30 30-45 School High School College

∆β -0.003* 0.000 -0.002 0.000 -0.005* -0.002
(0.0018) (0.0012) (0.0012) (0.0010) (0.0028) (0.0026)

Mobility > 0 97% 94% 96% 99% 81% 67%
Average Mobility 2.9% 1.5% 2.0% 1.8% 3.1% 2.2%
N 7344 7344 7344 7344 7344 7344
State FE Y Y Y Y Y Y
Year-Month FE Y Y Y Y Y Y

Notes. Table A.11 shows the estimates from equation (A.3) as ∆β ≡
∑5

τ=0 βτ/6. The stan-
dard error is state clustered. * means significant at the 10% level.
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B Model Details and Proofs

B.1 Analytic Solution of the Value Function

In this subsection, I obtain the analytic solution to the value functions. The analytic solu-
tion helps study the relation between the minimumwage and the endogenous separation
decision.

Proposition B.1. The value function J(x) is log concave and has the form:

(B.1) J(x) =


C0

0x
γ0
0 + C0

1x
γ0
1 − A(x,m), if x ⩽ x ⩽ xs

C1
0x

γ1
0 + C1

1x
γ1
1 −B(x,m), if xs < x < x

in which A and B are functions of productivity x and minimum wage m. The power coefficients

γ1
0 , γ0

1 , γ1
0 , γ1

1 are determined by model parameters and satisfy γ0
0 , γ

1
0 < 0, γ0

1 , γ
1
1 > 0.

The firm’s value function is decreasing in the minimum wage m. Fixing the other pa-
rameters, the minimum wage shifts the firm’s value function downward. The downward
shift means that the endogenous separation cutoff xmoves towards the right, making the
match more likely to dissolve. The rightward shift of the endogenous separation cutoff
suggests that after the minimumwage increase, the firm is less tolerate for low productiv-
ity. Hence, while the minimumwage increase might not cause displacement immediately,
it could increase the likelihood that the match ends.

The firm’s value function has parameters C0
0 , C

0
1 , C

1
0 , C

1
1 , x, xs. They are determined by

the boundary conditions. The first two are J(x) = 0 and J ′(x+) = 0. J(x) = 0 indicates
that at the endogenous separation cutoff, the value of the match is equal to 0, which is
the firm’s outside option. J ′(x+) = 0 is the smooth pasting condition. The next three
boundary conditions are continuities at the on-the-job-search cutoff: J(xs−) = J(xs+),
J ′(xs−) = J ′(xs+), J ′′(xs−) = J ′′(xs+). The last boundary condition is an arbitrary value
at the upper bound of the value function J(x) = J .
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The workers’ ability and the occupational skill requirement affects the power coeffi-
cients γ’s. In particular, the positive power coefficients γ0

1 and γ1
1 are increasing in the

workers’ ability and decreasing in mismatch. This implies that higher-ability workers and
better matched workers are less likely to quit to unemployment.

Proposition B.1 shows that for a fixed pair (a, j), the integral in equation (11) is a con-
stant, allowing one to solve for the value function. However, when the value functions
of all pairs of (a, j) are solved and integrated back as in equation (11), the resulting con-
stant should be the one used to solve for the value function in the first place. Section B.5.3
proves the existence of the solution.

B.2 Wage Setting Details

In this section I briefly discuss thewage setting in themodel. In particular, I first show that
the use of generalized Nash bargaining is justified with the introduction of the minimum
wage. Then I show that an adapted argument inMoscarini (2005) justifies the generalized
Nash bargaining with on-the-job search and switching cost.

The introduction of the minimum wage restricts the valid wage interval. A potential
problem with it is that the bargaining game might become non-convex. For example, if
the set of wages over which workers and the firms bargain is non-convex, then Nash ax-
iom would not be applicable and one cannot use Nash bargaining. Qin et al. (2015) show
that Nash bargaining is justified as long as the game is log-convex. A sufficient condition
for log-convexity is that the value functions over which the workers and the firms bar-
gain are log-concave. Proposition B.1 shows that log-concavity is satisfied, justifying the
generalized Nash bargaining with the minimum wage.

With the on-the-job search, the bargaining environment is more complex because a
worker can bargain with two potential employers simultaneously (Flinn (2006)). In Dey
and Flinn (2005) and Postel-Vinay and Robin (2002) where the productivity at the current
firm and the poaching firm are observable, a Bertrand-type game in which the employers
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bid for the services of the employee until the one with the dominated match drops out
solves the complexity. In Moscarini (2005) which has a similar environment as this paper,
only the expected value of thematch at the poaching firm is known. Two firms play an En-
glish first-price auction. In the auction, two firms take turns to bid for theworker, while the
existingmatch remains active. The auction ends after a firm fails to raise the last bid. With
this, the equilibriumwage remains an affine function of the productivity of thematch, and
the Nash bargaining is justified. My model introduces a switching cost on top of auction,
which requires the workers who decide to switch occupations to pay a one-time fee. In
the auction environment, this addition just means that the incumbent firm will be able
to retain the worker if the expected productivity in the poaching firm is the same as the
current productivity at the incumbent firm. For example, in Moscarini (2005), the worker
would switch to the poaching firm if the expected productivity is higher than her current
productivity. In my environment with the switching cost, the worker would switch only
if the expected productivity is sufficiently above the current productivity, which would
cover the switching cost.

The remaining of the section shows the detail derivation of the wage function equa-
tion (17). The generalizedNash bargaining holds for every productivity level x, and hence

βJ(x) = (1− β)(V (x)− U)

βJ ′(x) = (1− β)V ′(x)

βJ ′′(x) = (1− β)V ′′(x)

(B.2)

Now let us look at the value functions V (x) and J(x). For simplicity, I suppress the depen-
dence on x for functions V (x) and J(x) and write V and J . Using notation from above, I
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write the integral ∫Tn V (xp, j)dH(j)− ϕ as V . Then the value functions are

(1− β)r(V − U) =(1− β)w(x) + (1− β)V ′ a

1 + |a− j|
x+

1

2
(1− β)σ2x2V ′′

+ (1− β)αλIsw
(
V − V

)
− δ(1− β)(V − U)− r(1− β)U

βrJ =βx− βw(x) + βJ ′ a

1 + |a− j|
x+

1

2
βσ2x2J ′′ − βαλIswJ − δβJ

Using the relations in equation (B.2), the derivatives of J can be replaced by the derivatives
of V . We can subtract the first equation by the second one and solve for w(x) to get

w(x) = βx+ (1− β)b+ (1− β)λ(1− αIsw)
(
V − U

)

B.3 The Stationary Wage Distribution

The randomness in the productivity, together with separation and job finding, leads to
the stationary productivity and hence wage distribution. It is important that the wage
distribution of the model matches the empirical one in order to study the counterfactual.
In particular, the wage distribution is an important factor in determining the effect of the
minimum wage as it is related to the fraction of workers with binding minimum wages.

To that end, I derive the analytic solution of the stationary wage distribution equa-
tion (15) and summarize the result in proposition B.2.

Proposition B.2. The stationary wage distribution is:

(B.3) f(x) =


B0

0x
η00 +B0

1x
η01 , if x ⩽ x ⩽ xs

B1
0x

η10 +B1
1x

η10 , if xs < x < x

The parameters η00 , η01 , η10 , η11 satisfy η00, η
1
0 < 0, η01, η11 > 0.

The stationary wage distribution is double-Pareto, consistent with the empirical wage
distribution. Its left Pareto tail is crucial for matching the fraction of workers affected by

74



theminimum. The right Pareto tail, determined by the parameters η’s, governs the amount
of randomness in the productivity process. The right Pareto tail is locally decreasing in
the productivity volatility σ: a larger volatility implies a thinner right tail and hence less
inequality at the upper end. The intuition is that when the probability of large negative
shock is high, a high productivity is less likely.

B.4 The Wage Compression Channel

Here I explain in detail the wage compression channel in the model. Proposition B.3 is
important to the wage compression channel:

Proposition B.3. Conditional on employment, the worker’s value function is increasing in the

minimum wage. The amount of the increase is decreasing in worker’s ability a but increasing in

mismatch |a− j|.

Proposition B.3 implies that the minimum wage has varying effects across the ability
andmismatch distribution. High-abilityworkerswill benefit less from theminimumwage
increase because the minimum wage rarely binds for them. When the minimum wage
increases, there is little increase in their value function. One can view the value function
as the integral of future potential wage paths, weighted by the probability of each path.
For the high-ability workers, it is rare for their wage paths to drop below the minimum
wage. An increase in the minimum wage does not affect their value function by much.

Low-ability workers are more likely to face a binding minimum wage. An increase in
the minimum wage would increase their value function by much more. The minimum
wage increases the wage on each affected wage path and the measure of wage paths with
a binding minimum wage.

Similarly, mismatched workers benefit more from a minimum wage increase. The
ones that benefit the most from a minimum wage increase are the low-ability workers
in mismatched occupations, conditional on staying employed. The distributional effect
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of the minimum wage on the workers’ value function along two dimensions—ability and
mismatch—is the key to the wage compression channel.54

To illustrate how the minimum wage can affect a worker’s occupational mobility via
thewage compression channel, consider a low-abilityworker in amismatched occupation.
I fix a pair (a, j) such that a is small and |a− j| is large.

The intercept of the value function and the outside option determines her on-the-job
search cutoff point, as shown in figure B.1. Before the minimum wage, the cutoff point is
the “old xs” in the figure. By proposition B.3, when the minimum wage increases, con-
ditional on staying employed, she experiences a large increase in her value function. The
value function shifts upward. By comparison, her outside option increases by less. This is
because she would have less mismatch in her outside option, which according to proposi-
tion B.3 would give her less gain when the minimumwage increases. The minimumwage
increase narrows the wage gap between a mismatch and a good match. The new cutoff
point “new xs” moves to the left of the old cutoff point.

Figure B.2 illustrates the effect of the leftward movement of on-the-job-search cutoff
point on occupation mobility. Before the minimum wage increase, the low-ability worker
searches on the job for other occupations when her output is between x and xold

s . Once her
output exceeds xold

s , she stops searching on the job, shown in figure B.2 (a). Figure B.2 (b)
indicates what would happenwhen theminimumwage increases. The wage compression
effect moves the on-the-job-search cutoff to the left. The on-the-job-search region shrinks.
The probability of the worker’s output being in the “search” region decreases. A decrease
in occupational mobility follows.

54While proposition B.3 is intuitive, the proof reformulates the problem as an infinite horizon

optimal switching problem. I leave the details in the appendix section B.
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Output

Outside Option
Before Minimum
Wage Increase

Outside Option
After Minimum
Wage Increase

Value Function
After Minimum
Wage Increase

Value Function
Before Minimum
Wage Increase

Old xsNew xs

Figure B.1: The Wage Compression Channel

x Old xs x

Search Stay

Before MinimumWage Increase

x New xs x

Search Stay

After MinimumWage Increase

Figure B.2: On-the-Job Search and Occupational Mobility

B.5 Proofs

Throughout the proof
ã ≡ a

1 + |a− j|

denotes the drift of the productivity process.
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B.5.1 Derivation of the value function

Proof. The workers’ problem is

V (x) = E
[∫ τ

0

e−rtw(Xt)dt+ e−rτG(τ)

]
subject to

dXt = ãXtdt+ σXtdZt, dX0− = x

in which τ is a stopping time that corresponds to either switching occupations or unem-
ployment andG(τ) is the outside option. To simplify notations, I denote (∫Tn V (xp, j)dH(j)− ϕ

)
by V . Let τ1 be the stopping time that the worker is separated exogenously. Let τ2 be the
stopping time that the worker receives outside offer. τ is then the minimum of τ1 and τ2.
The worker’s value function can be written further as

V (x) = E[
∫ h∧τ1∧τ2

0

e−rtw(Xt)dt+ e−rhV (Xh)I{h<τ1,h<τ2}

+ e−rτ1UI{τ1<h,τ1<τ2} + e−rτ2V I{τ2<h,τ2<τ1}]

(B.4)

The symbol ∧means minimum of the two. Denote the generator of {Xt}(t>0) by L, which
is given by

LV = ãxV ′ +
1

2
σ2x2V ′′

Using the Ito’s lemma on V (Xh), we have

V (Xh) = v(x) +

∫ h

0

(LV )(Xt)dt+ local martingale

Plug this back into equation (B.4), we have

(
1− e−rh

)
V (x) = E[

∫ h∧τ1∧τ2

0

e−rt(w + LV )(Xt)dt

+ e−rτ1(U − V (x))I{τ1<h,τ1<τ2} + e−rτ2(V − V )I{τ2<h,τ2<τ1}]

(B.5)
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Note that because τ1 and τ2 are independent,55 we have

I{τ1<h,τ1<τ2} = (1− eδh)eαλh

I{τ2<h,τ2<τ1} = (1− eαλh)eδh

Divide equation (B.5) by 1
h
and let h → 0, I arrive at equation (11).

B.5.2 Proof of proposition B.1

Proof. I solve the differential equation (14) in the interval (x, xs). In this interval, the dif-
ferential equation can be written as

(B.6) (r + δ)J − ãxJ ′ − 1

2
σ2x2J ′′ − (1− β)x+ (1− β)(b+ λA(m)) = 0

where A(m) is some constant depending on the minimum wage. Define f(x,m) ≡ (1 −

β)x− (1− β)(b+ λA(m)). The general solution to equation equation (B.6) is

(B.7) J(x) = C0
0x

γ0
0 + C0

1x
γ0
1

The parameters γ0
0 and γ0

1 can be calculated directly via

γ0
0 = − ã

σ2
+

1

2
−
√

(
1

2
− ã

σ2
)2 +

2(δ + r)

σ2
< 0

γ0
1 = − ã

σ2
+

1

2
+

√
(
1

2
− ã

σ2
)2 +

2(δ + r)

σ2
> 0

(B.8)

Equation (B.6) also admits a special solution

(B.9) A(m,x) =
2

σ2(γ0
1 − γ0

0)

[
xγ0

1

∫ +∞

x

s−γ0
1−1f(s,m)ds+ xγ0

0

∫ x

0

s−γ0
0−1f(s,m)ds

]
55To construct such independent stochastic processes, see e.g. Rogers and Williams (2000).
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where f(x,m) is a function depending on theminimumwage. Specifically, when thewage
function is smaller than the minimum wage, f(x,m) = m. The solution to equation (B.6)
hence has the form

(B.10) J(x) = C0
0x

γ0
0 + C0

1x
γ0
1 − A(m,x)

Solving for A(m,x), I arrive at equation (B.1) for J(x) in (x, xs). Similarly, I can solve for
the value function in (xs,+∞). The power coefficients of solution γ1

0 and γ1
1 are given by

γ1
0 = − ã

σ2
+

1

2
−
√

(
1

2
− ã

σ2
)2 +

2(αλ+ δ + r)

σ2
< 0

γ1
1 = − ã

σ2
+

1

2
+

√
(
1

2
− ã

σ2
)2 +

2(αλ+ δ + r)

σ2
> 0

(B.11)

Two corollaries are immediate after proposition B.1.

Corollary B.1. There are boundary conditions such that the value function equation (B.1) is

strictly increasing.

Proof. To see this, I abstract from the other boundary conditions and consider only J(x) =

0 and J(xs) = B. This define a mapping from (x,B) to (C0
0 , C

0
1). Fix xs > 1 and let

B −→ +∞, it must be the case that C0
1 −→ +∞, otherwise the function remains bounded

in the interval (x, xs). C0
1 can be made so large that J(x) is increasing on (x, xs) because

we can choose xs so that the first term remains bounded. This completes the proof.

Corollary B.2. The threshold xs characterizes the workers’ on-the-job search decision.

Proof. If xs is unique then this is clearly the case. By lemma B.1, the value function can be
chosen to be monotonic. Under such a condition, xs is unique and the workers search on
the job if their output is between x and xs.
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B.5.3 Existence of Solutions to the Family of ODEs Equation (11) and Equation (14)

This subsection proves that the family of ODEs equation (11) and equation (14) has a
solution.

Proof. I utilize tools from functional analysis to prove the proposition. I make the ability
and the occupation distribution to bemore general so that it is given by a joint CDFN(a, j)

instead of independently by G(a) and H(j). To prove the existence of a solution, I need
one more assumption:

Assumption: The joint CDF N(a, j) has a continuous pdf n(a, j).
The problem at hand can be restated in the following abstract form:

1. Denote the constant in the ODE equation (11) by f(a). That is, I define f(a) ≡∫
Tn V (xp, a, j)n(a, j)dj. I let the function to be in the Banach spaceL1(Tn). That is, the
function is integrable on Tn. Given a value f(a), there is a corresponding solution of
the value function V (x, a, j) that is twice continuously differentiable. I denote V(a)

to be the L1([0, x]× Tn) valued function V (·, a, ·). By the uniqueness of the solution,
I can define a mapping T that maps from L1(Tn) to L1([0, x]× Tn):

(B.12) Tf = V

This mapping is bounded by standard result in the ODE literature. By the unique-
ness of solution and linearity of the differential operator, it is also linear.

2. Having obtained a family of solutions {V }(a,j), I fix a point x so that the family of
solutions is mapped into a family of functions on Tn ×Tn. I denote this mapping by
P :

(B.13) PV = V (x, ·, ·)
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This mapping is clearly linear and bounded:

(B.14) P (V1 + V2) = V1(x, ·, ·) + V2(x, ·, ·)

3. I integrate the function obtained in step 2 by the CDF N(a, j) with respect to j. De-
note this mapping Q:

(B.15) QV (x, a, j) =

∫
Tn

V (x, a, j)n(a, j)dj ≡ g(a)

The end result is that I map the function f(a) into the function g(a) by the operators T , P ,
Q. That is,

(B.16) QPT ◦ f = g

Note that all three operatorsQ, P , T are linear and bounded. Let us denote the composite
mapping by R. The problem reduces to finding a fixed point of the mapping R so that

(B.17) Rf = f

This can be done by observing that the operator Q is a compact operator. For a proof, see
Lax (2002). Since P and T are also linear bounded operators, the composite map R is
compact. This mapping is non-trivial, so there is at least one non-zero eigenvalue ξ with
eigen-function f such that Rf = ξf . I could now choose the job finding rate to be ξ−1 so
that R′f = f .
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B.5.4 Proof of proposition B.2.

Proof. The Fokker-Planck equation that the stationary productivity distribution is equa-
tion (15). Equation (15) implies that the density flowing into and out of any interior
point in (x, x)must be equal. Equation (15) holds regardless of the existence of the mini-
mum wage. This is because the minimum wage does not affect the worker’s productivity
process equation (10). The existence of the cutoff points x and xs is given by the optimal
stopping problem which is also not affected by the minimum wage. The minimum wage
only affects the locations of the cutoff points.

Equation equation (15) is a second-order ODE. At the lower-bound x, the distribution
f(x) satisfies an absorbing boundary condition. The corresponding equation is f(x+) = 0.
The worker will quit to unemployment once her productivity is below x. At the upper-
bound, the solution has an reflecting boundary condition by assumption:

(ã− σ2)f(x) =
1

2
σ2xf ′(x)

I solve the equation equation (15) in the interval (x, xs). The corresponding ODE is

(B.18) σ2

2
x2f ′′(x) + (2σ2 − ã2)xf ′(x) + (σ2 − ã− δ)f(x) = 0

Similar to the proof of proposition 1, the general solution is

(B.19) f(x) = B0
0x

η00 +B0
1x

η01

in which the parameters η00 and η01 are given by

η00 =− 2σ2 − ã

2
+

1

2
−

√
(
1

2
− 2σ2 − ã

2
)2 +

2(ã+ δ − σ2)

σ2
< 0

η01 =− 2σ2 − ã

2
+

1

2
+

√
(
1

2
− 2σ2 − ã

2
)2 +

2(ã+ δ − σ2)

σ2
> 0

(B.20)
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Similarly I can solve for f(x) in the interval (xs, x) and calculate that

η10 =− 2σ2 − ã

2
+

1

2
−
√

(
1

2
− 2σ2 − ã

2
)2 +

2(ã+ δ + αλ− σ2)

σ2
< 0

η11 =− 2σ2 − ã

2
+

1

2
+

√
(
1

2
− 2σ2 − ã

2
)2 +

2(ã+ δ + αλ− σ2)

σ2
> 0

(B.21)

Two more conditions pin down the stationary distribution. The first is that total flow in
and out of unemployment is constant. The second condition is that the total flow in and
out of employment must balance. This completes the proof.

B.5.5 Proof of proposition B.3.

Proof. Let us first formulate the worker’s problem in a different way. The worker chooses
an increasing sequence of stopping times, τn, τn → +∞, representing the decision of when
to search on the job and when to quit to unemployment, and jn is the occupational the
worker wants to switch to or the state of unemployment. Let p = {τn, jn}n∈N, the worker’s
problem can be written as:

(B.22) V (x) = sup
p

E

[∫ +∞

0

e−rtw(Xxs,j
t , j)dt−

∞∑
n=1

e−rτnϕ

]

wherew(x, j) is the payoff function in occupation j, in this case given by equation (17).
Xxs,j

t is the output process when the worker is in occupation j with the initial output xs.∑∞
n=1 e

rτnϕ is the sum of the discounted switching cost.
It can be shown that the solution is given by the variational inequality

(B.23) min

[
rVi − ãxV ′

i −
1

2
σ2x2V ′′

i − w(x), Vi −
∫
Tn

VjdH(j) + ϕ

]
= 0

Vi is the value function on occupation indexed i, similarly for Vj . There is an output
level xm such that if x < xm,w(x) is equal to theminimumwagem. Clearly, xm is increasing
m. It is also straight forward to see that when x < xm, ∂Vi/∂m > 0: solving the ODE
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when x < xm we get that the minimum wage enters the value function linearly. By the
smooth pasting condition and the uniqueness of the solution, this implies that ∂Vi/∂m > 0

everywhere. The interpretation of the result is that conditional on employment, workers’
value function is increasing in the minimum wage.

The increase in the value function because of the minimum wage is decreasing in the
drift ã because ∂2Vi/∂m∂ã < 0. The result comes from solving for the value function
when w(x) = m, in which the solution is linear in m with multiply coefficient equal to
2/σ2(γ0

1 − γ0
0). Taking the derivative of this multiply coefficient with respect to ã shows

that it is decreasing in ã, or the difference (γ0
1 − γ0

0) is increasing in ã. Mismatch decreases
ã, leading to a larger positive effect of the minimumwage on workers’ value function. The
rest of the proof is the same as the one shown in section 4.
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C ADiscussion of theEffect of theMinimumWageonSearch

Effort and Labor Force Participation

There is literature that emphasizes the effect of minimum wages on increasing the search
effort of unemployedworkers (e.g. Acemoglu (2001), Flinn (2006), Ahn et al. (2011)). The
model can extend to allow for such a response: let e(m) denote the increase in search effort
as a function of theminimumwage. The effectivemeasure of job seekers, i.e. equation (18)
becomes

(C.1)
s =e(m)

[
1−

∫ ∫ ∫ x

x

f(x, a, j,m)dxdG(a)dH(j)

]
+ α

∫ ∫ ∫ xs

x

f(x, a, j,m)dxdG(a)dH(j)

The increase in search effort would counteract the decrease in vacancy posting. If it dom-
inates, the job arrival rate could increase.

I note first that there is little empirical evidence of higher search effort after a mini-
mum wage increase. Adams et al. (2018) find that recent minimum wage increases lead
to a transitory increase in the search effort of unemployed workers. In the stationary equi-
librium, such a transitory increase becomes irrelevant. More importantly, the wage com-
pression channel is independent of the search effort response. It unambiguously reduces
occupational mobility.

Another related issue is that I do not model labor force participation. If the minimum
wage induces labor market entry of non-participants, the effective measure of job seek-
ers could increase, leading to an increase in job arrival rate. It could also mean that the
minimum wage can increase efficiency by ex post changing the bargaining power of the
workers.56 The model can accommodate the argument in a reduced-form way: there exist

56This is the point made by Flinn (2006). The minimum wage has a similar effect in my model,

but the welfare implication is less relevant because there is no labor force participation decision.
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an equilibrium after the minimum wage increase with a higher job arrival rate λ. To see
this, note that while firm’s value function is decreasing in the minimum wage, it is also
increasing in λ by equation (B.11). If the increase in the job arrival rate λ dominates, e.g.
because of increased labor force participation, there exists an equilibrium in which both
λ and the firm’s value function increases after a minimum wage increase so that the free
entry condition equation (19) still holds.

The implication of the preceding argument is that while the model does not include
labor force participation, it is still present when estimating the model. Note that the wage
compression channel only concerns the employed workers and hence is independent of
the potential increase in labor force participation. It exists as long as the workers’ wage is
negatively correlated with mismatch.

It is worth pointing out that an increase in the job arrival rate will also increase the
occupational mobility. If the labor force participation effect is strong such that the job
arrival rate increases, a decrease in the occupational mobility would imply that the wage
compression channel dominates.
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D Numerical Details

I present the details of the model estimation in this section. I discretize the worker ability
distribution so that there are ten levels of ability: (0.1, 0.2, ..., 1). I do the same for the occu-
pation distribution. I pool 2005 to 2016 CPS Merged Outgoing Rotation Groups (MORG)
data to be the sample. In this sample, 28.3% of the workers complete college degree and
above, 28.5% of the workers have associate degree or vocational training, and 43.2% of the
workers have high school degree or less. I set grid 1 and 4 to be the low ability workers, 5
to 7 to be the medium ability workers, and 8 to 10 to be the high ability workers. I calibrate
the parameters of the Beta distribution to match the empirical composition of the workers
by education exactly. The resulting parameterization is Beta(0.8877, 0.9415).

As mentioned in section 5, I introduce the search accuracy parameter ρ which de-
termines the probability that a worker is sorted into her optimal occupation. The joint
distribution of ability and occupation is hence implied by the distribution of workers
Beta(0.8877, 0.9415) and ρ. ρ impacts the occupational mobility rate, the effect of mini-
mum wages on occupational mobility, and wage gain from switching occupations. The
main target for ρ is the 1% wage gain from switching calculated by Guvenen et al. (2020).

An important parameter in the model is the initial output xp. It determines the oc-
cupational mobility and the measure of unemployment. I set it as a function of ability
a:

(D.1) xp(a) = c0 + c1a

I set c0 to be 5.35 and c1 to be 15 to match the empirical wage distribution.57 Both the on-
the-job-search cutoff equation (23) and the endogenous separation cutoff equation (24)

57I need to modify the proof in the appendix section B.5.3 to adapt for the case in which initial

output is an affine function of ability rather than fixed. When I have discrete distribution of abilities

and occupations this can be done easily.
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are functions of the initial output.
Having calibrated the distribution of (a, j) and the initial output xp, the economy for a

fixed pair of (a, j) is

rV (x) = w(x) +
a

1 + |a− j|
xV ′(x) +

1

2
σ2x2V ′′(x)− δ[V (x)− U ]

+ αλIsw
[∫

Tn

V (xp, j)dH(j)− V (x)− ϕ

]
rU = b+ λ

[∫
Tn

V (xp, j)dH(j)− U

]
rJ(x) = x− w(x) +

a

1 + |a− j|
xJ ′(x) +

1

2
σ2x2J ′′(x)− δJ(x)− αλIswJ(x)

w(x) = max

{
βx+ (1− β)b+ λ(1− β)(1− αIsw)

[∫
Tn

V (xp, j)dH(j)− ϕ− U

]
,m

}
κ =

∫ ∫
λ

ζ
ζ−1J(xs, a, j,m)dG(a)dH(j)

dXt

Xt

=
a

1 + |a− j|
dt+ σdZt

σ2

2
x2f ′′(x) +

[
2σ2 −

(
a

1 + |a− j|

)2
]
xf ′(x) + (σ2 − a

1 + |a− j|
)f(x)

− (δ + αλI{x<xs})f(x) = 0

The first three equations are the value functions. The fourth equation is thewage function.
The fifth equation is the free-entry condition, which relates the value functionwith the job-
finding rate. The last two equations are the evolution of the state variables, namely the pro-
ductivity and the productivity distribution. Note that the productivity distribution does
not affect the value functions. It determines the measure of unemployed workers (equa-
tion (18), equation (19), equation (D.1)) and the occupational mobility (equation (20),
equation (D.1)).

Proposition B.1 shows that the firm’s value function has an analytic solution with six
undetermined coefficients. The value function of the workers has a similar analytic solu-
tion. One way to solve for the value functions is to use the boundary conditions to pin
down the undetermined coefficients. Alternatively, I could specify the on-the-job-search
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cutoff xs and the endogenous separation cutoff x as a function of the state variables, solve
for the value function, and verify that the solution is consistent.

I follow Lise and Robin (2017) and use GMM to estimate the parameters. In construct-
ing the variance-covariance matrix of the vector of moments, the moments consist of only
means. I use the Newey-West estimator to estimate the variance-covariance matrix as in
Lise and Robin (2017) and choose the lag order to be 6.

The numerical algorithm is the following:

1. Fix the vector of parameters in table 4.

2. Fix the minimum wage to be $7.25. Fixed the job-finding rate to 0.36.

3. Given the cutoffs xs and x (equation (23) and equation (24)), solve for the value
functions by invoking proposition B.1.

4. Update the job finding rate via the free-entry condition equation (19).

5. Calculate the wage distribution, the measure of unemployed workers, and the occu-
pational mobility using equation (21). Calculate the fraction of workers with wages
less than $15.

6. Increase the minimum wage to $8 (10% increase). Set a new job-finding rate λ′.

7. Repeat 3 and 4.

8. Calculate the elasticity of employment and occupational mobility.

9. Move to the next vector of parameters. Repeat until the GMM squared error is min-
imized.

In the GMM estimation, I set weights to be 100 for moments 5 to 13. The weights for
the other moments are set to be 1. Themodel matches themoment targets quite well given
the heterogeneity. Specifically, the employment elasticity and the occupational mobility
elasticity are matched quite well which are the main focus of the paper.
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Figure D.1 plots the empirical wage distribution in blue and the simulated wage distri-
bution in orange. I construct the empirical wage distribution using CPS merged outgoing
rotation group data from 2005 to 2016. I calculate the real wages using the 2012 chain-
type price index. The simulated wage distribution comes from averaging 500 periods of
the realized wages in the estimated model when the minimum wage is $7.25. The Y-axis
is cutoff at 0.06 for better visual. There is a pike at $7.25 because of the minimum wage
workers.

The simulated wage distribution gives more weight on the medium wage range and
falls short of accounting for the density in low wage and extreme high wage range. The
overall shape and the decay of the right tail match the empirical distribution.

Figure D.1: Model Simulated and Empirical Wage Distribution

In section 5 I decompose the effect of minimum wages on occupational mobility and
aggregate output by looking at the wage compression channel alone and by looking at the
overall effect. I obtain the results without employment effect by setting p2 to be 0 and λ′

to be 0.36. p2 governs the displacement effect of the minimum wage while λ′ governs the
effect on vacancy posting.
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I plot the average wage by workers’ ability in (a) of figure D.2. The average wage
increases as the worker’s ability goes up. The sharp rise shows that ability difference con-
tributes to the fat right tail of the wage distribution. The increase in average wage by
occupation skill intensity is less significant, as shown in (b) of figure D.2. The comparison
implies that sorting is imperfect because workers cannot target their optimal occupations
with certainty.

To shut down thewage compression channel and focus on the employment effect chan-
nel, I set the parameter s2 to be 0, which determines the response of occupational mobility
to theminimumwage. The occupational mobility for low ability workers decreases by 3%,
and overall occupational mobility decreases by 2%. The effects are almost additive: when
I restrict the model to have no employment effect, the corresponding estimates are 42%
and 28% while the results with both channels are 44% and 30% respectively.

Turning to the effect on aggregate output, when I restrict the model to have only em-
ployment effect, the estimate shows that aggregate output decreases by 0.15% when the
minimum wage increases to $15. This estimate is insignificant at 5% level.

D.1 Wage Inequality

While the aggregate output declines after the minimum wage increases to $15, the wage
inequality, measured by the median-to-10th-percentile ratio, is 56% of that when the min-
imum wage is $7.25. This is because a larger fraction of the surplus goes to workers and
firms bear the profit loss after the minimum wage increase.

The reduction in wage inequality is partly offset by declines in occupational mobility.
In other words, some of the low-ability workers would have earned a wage above the $15
minimum wage by switching to the occupation that better match their skills. After shut-
ting down the wage compression channel so that the reduction in occupational mobility
becomes negligible, the median-to-10th-percentile ratio is 55% of that when the minimum
wage is $7.25. In other words, if the minimum wage increase were not to decrease occu-
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(a) Average Wage by Ability

(b) Average Wage by Occupation

Figure D.2: Model Simulated Average Wage

pational mobility, the reduction in wage inequality would be more significant.
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E Extra Figures

E.1 States and Their GSC Controls

Figure E.1: GSC Fit
(a) Alabama (b) Alaska (c) Arizona

(d) Arkansas (e) California (f) Colorado

(g) Connecticut (h) Delaware (i) District of Columbia

(j) Florida (k) Georgia (l) Hawaii
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Figure E.2: GSC Fit
(a) Idaho (b) Illinois (c) Indiana

(d) Iowa (e) Kansas (f) Kentucky

(g) Louisiana (h) Maine (i) Maryland

(j) Massachusetts (k) Michigan (l) Minnesota
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Figure E.3: GSC Fit
(a) Mississippi (b) Missouri (c) Montana

(d) Nebraska (e) Nevada (f) New Hampshire

(g) New Jersey (h) New Mexico (i) New York

(j) North Carolina (k) North Dakota (l) Ohio

96



Figure E.4: GSC Fit
(a) Oklahoma (b) Oregon (c) Pennsylvania

(d) Rhode Island (e) South Carolina (f) South Dakota

(g) Tennessee (h) Texas (i) Utah

(j) Vermont (k) Virginia (l) Washington
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Figure E.5: GSC Fit
(a) West Virginia (b) Wisconsin (c) Wyoming
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E.2 Dynamic Quasi-Elasticity of the MinimumWage

Figure E.6: Dynamic Quasi-Elasticity of the MinimumWage for Subgroups of Workers

(a) Younger Workers (b) Older Workers

(c) High-School Workers (d) College Workers

(e) Young High-School Workers (f) Young College Workers
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F Micro-Found the Productivity Process

I micro-found the productivity process in section 3. Consider a Ben-Porath economy with
human capital accumulation and labor supply decisions. Occupation-specific human cap-
ital determines productivity. Denote

ã ≡ a

1 + |a− j|

To simplify, I assume that thematch lasts for T periods and I normalized the outside option
to be 0. One can think of T as a stopping time which does not affect the result in this
section. The worker’s objective is to minimize the disutility of labor supply and human
capital accumulation, with initial human capital equal to h1.

(F.1) min
{ht+1}

T∑
t=1

βtD(lt, st)

The effective labor supply, lt is decreasing in human capital ht. A worker can accumulate
human capital by exerting effort st. I assume that the effective labor supply is given by

(F.2) lt = g(ht)

The function g(ht) is continuously differentiable and g′ < 0. The interpretation is that
human capital reduces labor disutility. Workers’ effort leads to human capital growth
subject to some shock ϵt.

(F.3) ht+1 = ht + f(ã, ϵt, st)

Equation (F.3) suggests that human capital accumulation depends on match-specific fac-
tor ã, effort st, and some shock. I assume ∂2f/∂ϵt∂st > 0, so that with good shocks, the
same level of effort raises human capital by more. This is in line with the literature on the
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persistent effect of labor market entry shocks on wages, in which one explanation is that
workers accumulate human capital faster with good entry shocks (see e.g. Oreopoulos et
al. (2012)). In addition, I assume ∂2f/∂ã∂st > 0, so the marginal gain in human capital
by effort is increasing in match quality ã. The shock ϵ has pdf ϕ(ϵ).

The disutility function is separable in effective labor supply and effort.

(F.4) D(lt, st) = d1(lt) + d2(st)

The recursive formulation of the problem is hence

(F.5) V (ht, ϵt) = min
st

d1(g(ht)) + d2(st) + β

∫
V (ht + f(ã, ϵt, st), ϵt+1)ϕ(ϵt+1)dϵt+1

The worker chooses the human capital accumulation effort st to trade off current disutility
d2(st)with future labor disutility reduction. The first order condition reflects this trade-off:

(F.6) d′2(st) + β

∫
∂V

∂h
ϕ(ϵt+1)dϵt+1 = 0

This is an implicit function of st, which implies that the human capital increment is
determined by f(ã, ϵt, st(ht, ϵt)). Note that the envelop condition gives

(F.7) ∂V

∂h
= d′1(g(ht))g

′(ht) + β

∫
∂V

∂h
ϕ(ϵt+1)dϵt+1

With equation (F.7), it is easy to verify that ∂2f/∂ht∂ϵt > 0 and ∂2f/∂ht∂ã > 0. Using
Taylor expansion, I have

(F.8) f(ã, ϵt, ht) ≈ β0 + β1ã+ β2ϵt + β3ht + β4ãht +
β5

σ
σϵtht

in which β4, β5 > 0. I also assume that shock per se does not affect human capital accu-
mulation so that β2 = 0.
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Plug equation (F.8) into equation (F.3). With some normalization, I arrived at

(F.9) ht+1 = ht + (ã+ σϵt)ht

This is equivalent to

(F.10) ht+1 − ht

ht

= ã+ σϵt

Equation (F.10) is the same as equation (10). The result suggests that in a Ben-Porath
economy with endogenous human capital accumulation, the human capital process can
evolve stochastically, depending on match-specific component ã and idiosyncratic shock
ϵ.
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G A Directed Search Model with Wage Posting

In this section I construct a simple directed search model with wage posting, and show
that the minimum wage decreases occupational mobility and increases mismatch by the
wage compression channel.

Consider the following one period model. There is a continuum of workers i ∈ [0, 1]

and two occupations. The workers are mismatched in occupation 1 and better matched
in occupation 2. Mathematically, the output of workers in occupation 1, y1 is less than the
output in occupation 2, y2.

The workers start in occupation 1 and can switch to occupation 2 subject to a switching
cost ϕ. Their outside option is unemployment, with the value equal to U . The unemploy-
ment benefit is b. Let αw(q) denote the probability that a worker finds a job. q = u/v is
the queue length. Let w1 be the wage posted in occupation 1 and w2 be the wage posted
in occupation 2. Let q1 be the queue length in occupation 1 and q2 be the queue length in
occupation 2. In equilibrium, we have

(G.1) U = αw(q1)w1 + [1− αw(q1)]b = αw(q2)w2 + [1− αw(q2)]b− ϕ

The firms choose to post vacancies in occupation 1 and 2 subject to the same flow cost
of vacancy κ. Let αe(q) = qαw(q) be the probability that a vacancy is filled. The firms’
value functions are

(G.2) J = max
wj ,qj

−κ+ αe(qj)(yj − wj), j = 1, 2

Substituting equation (G.1) into equation (G.2), we have by the first order condition:

α′
e(q1) =

U − b

y1 − b

α′
e(q2) =

U + ϕ− b

y2 − b

(G.3)
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Equation (G.3) implies that the difference between q1 and q2 depends on y1, y2, and U :

(G.4) q1 − q2 = α′−1
e (

U − b

y1 − b
)− α′−1

e (
U + ϕ− b

y2 − b
)

It is also easy to see that the wage is increasing in y because in equilibrium w = b +

ϵ(q)(y − b). Now let us impose a minimum wage m which is between w1 and w2: w1 <

m < w2. For the equilibrium to exist, the value of unemployment needs to increase. Now
differentiating equation (G.4) with respect to U :

(G.5) ∂q1 − q2
∂U

=
1

(y1 − b)α′′
e((U − b)/(y1 − b))

− 1

(y2 − b)α′′
e((U + ϕ− b)/(y2 − b))

Since ae(q) is concave, some algebra shows that ∂q1 − q2/∂U > 0: more workers would
stay in the mismatched occupation 1 and less workers would move to the better matched
occupation 2. The increase in the minimum wage m and hence U leads to a decrease in
switching from occupation 1 to 2 and an increase in mismatch. The example shows that
a one period directed search model with wage posting is consistent with the implications
of the model in section 3.
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